1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
use rand;

use std::default::Default;
use std::iter::{FromIterator, IntoIterator};
use std::ops::{Index, IndexMut};

use node::{Node};

/// A map based on a randomized treap.
#[derive(Debug, Clone)]
pub struct TreapMap<K, V, Rng=rand::XorShiftRng> {
    root: Option<Box<Node<K, V>>>,
    size: usize,
    rng: Rng,
}

/// An iterator over a treap's entries.
pub struct Iter<'a, K: 'a, V: 'a> {
    nodes: Vec<&'a Node<K, V>>,
}

/// A mutable iterator over a treap's entries.
pub struct IterMut<'a, K: 'a, V: 'a> {
    nodes: Vec<&'a mut Node<K, V>>,
}

/// An owning iterator over a treap's entries.
pub struct IntoIter<K, V> {
    nodes: Vec<Node<K, V>>,
}

enum Traversal<T> {
    // Traverse left subtree before emitting value at node
    Left(T),
    // Emit value at node and continue with right subtree
    Right(T),
}

/// An iterator over a treap's entries in key order.
pub struct OrderedIter<'a, K: 'a, V: 'a> {
    nodes: Vec<Traversal<&'a Node<K, V>>>,
}

impl<K: Ord, V> TreapMap<K, V, rand::XorShiftRng> {

    /// Create an empty treap with the default random number generator. The
    /// XorShift random number generator is used by default since it is fast,
    /// but please note that it is not cryptographically secure.
    ///
    /// ```
    /// let mut t = treap::TreapMap::new();
    /// t.insert(5, "yellow");
    /// if let Some(s) = t.get(&5) {
    ///     println!("{}", s);
    /// }
    /// ```
    pub fn new() -> TreapMap<K, V, rand::XorShiftRng> {
        TreapMap { root: None, size: 0, rng: rand::weak_rng() }
    }

}

impl<K: Ord, V, Rng: rand::Rng> TreapMap<K, V, Rng> {

    /// Create an empty treap with a given random number generator.
    ///
    /// ```
    /// extern crate rand;
    ///# extern crate treap;
    ///
    ///# fn main() {
    /// let mut t = treap::TreapMap::new_with_rng(rand::thread_rng());
    /// t.insert(5, "yellow");
    ///# }
    /// ```
    pub fn new_with_rng(rng: Rng) -> TreapMap<K, V, Rng> {
        TreapMap { root: None, size: 0, rng: rng }
    }

    /// Return the number of elements in the treap.
    ///
    /// ```
    /// let mut t = treap::TreapMap::new();
    /// assert_eq!(t.len(), 0);
    /// t.insert(5, 1);
    /// assert_eq!(t.len(), 1);
    /// ```
    pub fn len(&self) -> usize { self.size }

    /// Return true if the treap contains no elements.
    ///
    /// ```
    /// let mut t = treap::TreapMap::new();
    /// assert!(t.is_empty());
    /// t.insert(5, 1);
    /// assert!(!t.is_empty());
    /// ```
    pub fn is_empty(&self) -> bool { self.size == 0 }

    /// Removes all elements from the treap.
    ///
    /// ```
    /// let mut t = treap::TreapMap::new();
    /// t.insert(5, 1);
    /// t.clear();
    /// assert!(t.is_empty());
    /// ```
    pub fn clear(&mut self) {
        self.root.take();
        self.size = 0;
    }

    /// Borrow the value corresponding to the given key if it exists in the treap.
    ///
    /// ```
    /// let mut t = treap::TreapMap::new();
    /// t.insert(5, "yellow");
    /// t.insert(3, "blue");
    /// t.insert(8, "green");
    /// assert_eq!(t.get(&5), Some(&"yellow"));
    /// assert_eq!(t.get(&10), None);
    /// ```
    pub fn get(&self, key: &K) -> Option<&V> {
        self.root.as_ref().and_then(|n| n.get(key))
    }

    /// Return a mutable reference to the value corresponding to the given key if it exists in the treap.
    ///
    /// ```
    /// let mut t = treap::TreapMap::new();
    /// t.insert(5, "yellow");
    /// match t.get_mut(&5) {
    ///     Some(x) => *x = "blue",
    ///     None => (),
    /// }
    /// assert_eq!(t.get(&5), Some(&"blue"));
    /// ```
    pub fn get_mut(&mut self, key: &K) -> Option<&mut V> {
        self.root.as_mut().and_then(|n| n.get_mut(key))
    }

    /// Returns true if the key is present in the treap.
    ///
    /// ```
    /// let mut t = treap::TreapMap::new();
    /// t.insert(5, "yellow");
    /// assert_eq!(t.contains_key(&5), true);
    /// assert_eq!(t.contains_key(&8), false);
    /// ```
    pub fn contains_key(&self, key: &K) -> bool {
        self.get(key).is_some()
    }

    /// Insert a value with a given key. Returns the previous value if the key is already in the
    /// treap.
    ///
    /// ```
    /// let mut t = treap::TreapMap::new();
    /// assert_eq!(t.insert(5, "yellow"), None);
    /// assert_eq!(t.insert(5, "blue"), Some("yellow"));
    /// ```
    pub fn insert(&mut self, key: K, value: V) -> Option<V> {
        let priority = self.rng.next_f64();
        let res = Node::insert_or_replace(&mut self.root, Node::new(key, value, priority));
        if res.is_none() { self.size += 1; }
        res
    }

    /// Remove the given key from the treap and return the value associated with it if any.
    ///
    /// ```
    /// let mut t = treap::TreapMap::new();
    /// t.insert(5, "blue");
    /// assert_eq!(t.remove(&5), Some("blue"));
    /// assert_eq!(t.remove(&10), None);
    /// ```
    pub fn remove(&mut self, key: &K) -> Option<V> {
        let res = Node::remove(&mut self.root, key);
        if res.is_some() { self.size -= 1; }
        res
    }

    /// Returns an iterator over keys and values in the treap that gives the keys in sorted order.
    ///
    /// ```
    /// let mut t = treap::TreapMap::new();
    /// t.extend((1..10).map(|x| (x, "a")));
    ///
    /// let v: Vec<i32> = t.iter_ordered().map(|(&k, _)| k).collect();
    /// assert_eq!(v, vec![1, 2, 3, 4, 5, 6, 7, 8, 9]);
    /// ```
    pub fn iter_ordered(&self) -> OrderedIter<K, V> {
        OrderedIter {
            nodes: match self.root {
                None => Vec::new(),
                Some(ref n) => vec![Traversal::Left(&**n)]
            }
        }
    }
}

impl<K: Ord, V, Rng: rand::Rng> Extend<(K, V)> for TreapMap<K, V, Rng> {
    #[inline]
    fn extend<T: IntoIterator<Item=(K, V)>>(&mut self, iter: T) {
        for (k, v) in iter {
            self.insert(k, v);
        }
    }
}

impl<K: Ord, V> FromIterator<(K, V)> for TreapMap<K, V> {
    #[inline]
    fn from_iter<T: IntoIterator<Item=(K, V)>>(iter: T) -> TreapMap<K, V> {
        let mut treap = TreapMap::new();
        treap.extend(iter);
        treap
    }
}

impl<K: Ord, V> Default for TreapMap<K, V> {
    fn default() -> TreapMap<K, V> {
        TreapMap::new()
    }
}

/// Return an iterator that moves keys and values out of treap. The order is arbitrary.
///
/// ```
/// let mut t = treap::TreapMap::new();
/// t.extend(vec![(1, "red"), (2, "blue"), (3, "green")].into_iter());
///
/// // Print keys and values in arbitrary order.
/// for (k, v) in t {
///     println!("{}: {}", k, v);
/// }
/// ```
impl<K: Ord, V, Rng: rand::Rng> IntoIterator for TreapMap<K, V, Rng> {
    type Item = (K, V);
    type IntoIter = IntoIter<K, V>;

    fn into_iter(self) -> IntoIter<K, V> {
        IntoIter {
            nodes: match self.root {
                None => Vec::new(),
                Some(n) => vec![*n]
            }
        }
    }
}

/// Return an iterator over keys and values in the treap. The order is arbitrary.
///
/// ```
/// let mut t = treap::TreapMap::new();
/// t.extend(vec![(1, 200), (2, 120), (3, 330)].into_iter());
///
/// let sum = (&t).into_iter().fold(0, |s, (&k, &v)| s + k + v);
/// assert_eq!(sum, 656);
/// ```
impl<'a, K: Ord, V, Rng: rand::Rng> IntoIterator for &'a TreapMap<K, V, Rng> {
    type Item = (&'a K, &'a V);
    type IntoIter = Iter<'a, K, V>;

    fn into_iter(self) -> Iter<'a, K, V> {
        Iter {
            nodes: match self.root {
                None => Vec::new(),
                Some(ref n) => vec![&**n]
            }
        }
    }
}

/// Return an mutable iterator over keys and values in the treap. The order is arbitrary.
///
/// ```
/// let mut t = treap::TreapMap::new();
/// t.extend(vec![(1, 200), (2, 120), (3, 330)].into_iter());
///
/// for (k, v) in &mut t {
///     *v += *k;
/// }
/// assert_eq!(t.get(&2), Some(&122));
/// ```
impl<'a, K: Ord, V, Rng: rand::Rng> IntoIterator for &'a mut TreapMap<K, V, Rng> {
    type Item = (&'a K, &'a mut V);
    type IntoIter = IterMut<'a, K, V>;

    fn into_iter(self) -> IterMut<'a, K, V> {
        IterMut {
            nodes: match self.root {
                None => Vec::new(),
                Some(ref mut n) => vec![&mut **n]
            }
        }
    }
}

impl<'a, K: Ord, V, Rng: rand::Rng> Index<&'a K> for TreapMap<K, V, Rng> {
    type Output = V;

    fn index(&self, key: &K) -> &V {
        self.get(key).expect("no entry found for key")
    }
}

impl<'a, K: Ord, V, Rng: rand::Rng> IndexMut<&'a K> for TreapMap<K, V, Rng> {
    fn index_mut(&mut self, key: &K) -> &mut V {
        self.get_mut(key).expect("no entry found for key")
    }
}

impl<'a, K, V> Iterator for Iter<'a, K, V> {
    type Item = (&'a K, &'a V);

    fn next(&mut self) -> Option<(&'a K, &'a V)> {
        match self.nodes.pop() {
            None => None,
            Some(node) => {
                if let Some(ref boxed) = node.left {
                    self.nodes.push(&**boxed);
                }
                if let Some(ref boxed) = node.right {
                    self.nodes.push(&**boxed);
                }
                Some((&node.key, &node.value))
            }
        }
    }
}

impl<'a, K, V> Iterator for IterMut<'a, K, V> {
    type Item = (&'a K, &'a mut V);

    fn next(&mut self) -> Option<(&'a K, &'a mut V)> {
        match self.nodes.pop() {
            None => None,
            Some(node) => {
                if let Some(boxed) = node.left.as_mut() {
                    self.nodes.push(&mut **boxed);
                }
                if let Some(boxed) = node.right.as_mut() {
                    self.nodes.push(&mut **boxed);
                }
                Some((&node.key, &mut node.value))
            }
        }
    }
}

impl<K, V> Iterator for IntoIter<K, V> {
    type Item = (K, V);

    fn next(&mut self) -> Option<(K, V)> {
        match self.nodes.pop() {
            None => None,
            Some(node) => {
                if let Some(boxed) = node.left {
                    self.nodes.push(*boxed);
                }
                if let Some(boxed) = node.right {
                    self.nodes.push(*boxed);
                }
                Some((node.key, node.value))
            }
        }
    }
}

impl<'a, K, V> Iterator for OrderedIter<'a, K, V> {
    type Item = (&'a K, &'a V);

    fn next(&mut self) -> Option<(&'a K, &'a V)> {
        use self::Traversal::{Left, Right};
        loop {
            match self.nodes.pop() {
                None => return None,
                Some(Left(node)) => {
                    self.nodes.push(Right(node));
                    if let Some(ref node_box) = node.left {
                        self.nodes.push(Left(&**node_box));
                    }
                }
                Some(Right(node)) => {
                    if let Some(ref node_box) = node.right {
                        self.nodes.push(Left(&**node_box));
                    }
                    return Some((&node.key, &node.value));
                }
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use super::TreapMap;

    #[test]
    fn test_len() {
        let mut t = TreapMap::new();
        assert_eq!(t.len(), 0);
        t.insert(1, 1);
        assert_eq!(t.len(), 1);
        t.insert(1, 2);
        assert_eq!(t.len(), 1);
        t.insert(2, 2);
        t.insert(3, 3);
        assert_eq!(t.len(), 3);
        t.remove(&2);
        assert_eq!(t.len(), 2);
    }
}